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Abstract

This report presents the results of the Dynamic Image Interpretation for the Au-
tonomous Vehicle Navigation project from the time period 2/26/85 to 7/12/89. The
purpose of the project is to develop algorithms and tools to enable a robotic ground vehi-
cle to navigate autonomously through realistic landscapes.

In this final annual report, we summarize our accomplishments in constructing robust
algorithms to be used for vehicle navigation as well as tools that have been developed to
more efficiently utilize these algorithms.
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Summary

Over the course of this contract from February 26, 1985 to July 12, 1989, our research
has fallen into two broad categories: Motion and Mobile Robot Navigation. We first
summarize our work on motion and then that on mobile robot navigation.

Work on Motion

Our research on motion has led us to develop a variety of motion algorithms, and in
most cases, apply them to real-world image sequences including the domains of robot arm
workspaces, indoor hallways, and outdoor sidewalk/road scenes.

Anandan constructed an algorithm for determining feature point correspondences be-
tween frames that allowed the computation of dense displacement fields with associated
confidences. The algorithm can also be used to effectively track points during motion.
Glazer developed two algorithms for the efficient computation of image motions using hi-
erarchical multiresolution methods operating over image data pyramids. Adiv developed
an algorithm (to date, the only one that exists) for general sensor motion (five degrees
of freedom) in an environment with objects undergoing independent general motion. He

also analyzed the conditions under which the determination of these motion parameters
would be ambiguous. In related work, Snyder analyzed the effects of uncertainty in the
location of the FOE and of feature points in the image on the computation of depth, and
showed how this analysis could be used to provide quantitative predictions for constraining
the search window used for matching these points in future frames. He also analyzed the
relative efficacy of motion and stereo for depth computations.

Much of our work has centered on the recovery of depth from assumed translational mo-
tion. Pavlin developed an efficient algorithm for extracting the focus-of-expansion (FOE)
from a sensor undergoing pure translational motion (i.e., two degrees of freedom) to an
accuracy of a few degrees. Bharwani, et al. used Pavlin's work to develop a multi-frame
algorithm for depth extraction under known translational motion which iteratively pre-
dicted the image motion of a feature point in future frames, determined correspondence by
a search over the limited predicted area, and then refined the depth estimate using the new
match. Difficulties with this algorithm led us to develop a general motion algorithm by
combining the optical flow computation of Anandan and the motion parameter estimation
component of Adiv's algorithm. This algorithm seems to be able to predict depth with an
error of about 10%.

Other techniques we developed to extract depth from motion are those due to Bala-
subramanyam, Snyder, and Weiss using stereoscopic motion, Pavlin using assumptions of
constant general motion, Williams and Hanson using grouped geometric structures, and
Sawhney and Oliensis using the image traces of points undergoing purely rotational mo-
tion. A further aspect of our research has been the collection of extensive motion data
with ground truth of known precision. These data were collected on the Autonomous Land
Vehicle (ALV) at Martin Marietta's Denver, Colorado test site, and are presently available

I i i I II l l1



to the general vision community.

Work on Mobile Robot Navigation

In the pasf iobile robots have been constrained to operate in either an indoor or an
outdoor envirnment, but not both. Special purpose representations and ad hoc sensor
techniques geared toward tasks of narrow focus have dominated these efforts. Our mo-
bile robot effort has addressed the problem of enabling a mobile automaton to navigate
intelligently through indoor and outdoor environments.

Our first attempt to construct such a "cosmopolitan" robot was the development of the
Autonomous Robot Architecture (AuRA) by Arkin which makes use of a "meadow" map
for global path planning. This map serves as the robot's long term memory and contains
imbedded a priori knowledge to guide sensor expectations.

Arkin's work has been used by Fennema to further investigate the problem of navigating
intelligently through arbitrary environments. He uses model-based processing of the visual
sensory data as the primary mechanism for obstacle avoidance, movement through the
environment, and measuring progress towards a given goal. The modular building blocks
of the system include the planning and plan monitoring modules, a set of vision modules,
a 3-D modelling system, a 2-D feature matching and fitting system, and finally a 3-D
pose refinement system for updating the robot's location and orientation.

The world model is developed in a 3-D solid modelling package, GeoMeter, developed
by Connolly, Weiss, et al. GeoMeter serves as a system for representing both polyhedral
solid objects (such as buildings) in terms of basic geometrical entities such as vertices,
faces, and edges, as well as curved surfaces. It has been used to construct a 3-D model of
both indoor and outdoor environments.

An important problem in model-driven 3-D interpretation is how to use approximate
knowledge of the location and orientation of the sensor, models of objects in the environ-
ment, and the results of low-level vision to determine the image-to-model correspondence.
The approach we have taken is to separate 2-D model-to-image matching from the de-
termination of the 3-D pose parameters. Mechanisms for optimal 2-D model matching,
used to locate landmarks derived from the world model and to estimate the robot's current
position, are the subject of research by Beveridge, et al., who determine correspondences
between the model and the data lines such that an optimized spatial fit will produce the
lowest match error. Methods for determining the "pose," i.e., the position and orientation,
of the robot with respect to a world coordinate system have been developed by Kumar.

The successes in actual robot experimentation to date at UMass have been modest,
but are increasing in power and robustness, and are beginning to have real significance.
Successful navigation of both an outdoor sidewalk and an indoor hall using the approaches
of Fennema, Beveridge, Kumar, et al. has been achieved. The algorithm is quite robust
working with (unchanging) environments in the presence of significant path edge disconti-
nuities (doorways, vehicle tracks, clutter etc.). To date, obstacle avoidance on vehicle runs
has been handled using ultrasonic data. Dead-reckoning information is used minimally in
our system as our goal is to serve as a testbed for vision algorithms.
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Many of the issues involved in the mobile vehicle research can be seen as complemen-
tary to those of other areas in our vision and robotics groups. The use of perceptual and

motor schemas in the proposed vehicle architecture exploits many of the concepts used in
both the VISIONS scene interpretation group and the work being done in the Laboratory
for Perceptual Robotics' distributed programming environment. Multi-sensor integration,
certainly crucial for the vehicle's domain, will benefit from the work being done on the

integration of vision, touch, and force sensing. Our research on developing parallel im-
plementations of robust vision algorithms is certainly synergistic with our development of
parallel architectures for real time vision processing.

1 Introduction

One of the key features of an object that usually distinguishes it from other objects in
the environment is its movement relative to them. Even when an object is camouflaged
by its similarity in appearance to other objects, any independent movement of the object
immediately gives it away. In addition, if there is relative movement between the camera
and the object, the viewer is automatically provided with several distinct views of the
object and therefore with 3D structures and their dynamic characteristics.

The two most common methods of obtaining two images from two distinct views are
stereopsis and motion. Stereopsis is when two images are obtained simultaneously by
two cameras. Motion is when several images are taken one after another by a single camera
moving with respect to the environment. In most applications of stereopsis, it is common
to orient the cameras such that their image planes are perpendicular to the ground plane
and their optical axes are parallel to each other. Usually the displacement between the
camera locations is horizontal and parallel to fae image plane.

Given two images obtained from either stereo or motion, the task is to combine them
to provide 3D information about the objects in the image. The process usually consists of
two stages - the establishment of the correspondence between the points in the two images
to provide a disparity and then a depth map, followed by some process that uses the depth
information to discover and describe the surfaces in the 3D environment.

Before we proceed further, we define a few key terms. The correspondence problem is

the task of identifying events in the two images as images of the same event in the 3D
environment. The disparity is the distance between the locations in the two images of the
two corresponding events. When the optical axes are parallel to each other, the depth of
a point is its distance along the optical axis from the image planes.

Motion processing can be broadly divided into two categories:

1. the camera moves and the environment is stationary, and

2. there are independently moving objects in the scene.

The first case is easier to analyze and process, as can be seen from the large number of
techniques that have been developed for this purpose.
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The most common approach taken towards motion analysis is one in which the process-
ing proceeds bottom-up, The movement of individual points in the images is computed
first, followed by a process that determines the motion of the camera, as well as the loca-
tion, 3D structure, and motion of the objects in the scene.

One important term used in motion research is optical flow. Optical flow can be
broadly defined as the vector field representing the changes in the positions of the images
of environmental points over time. Strictly speaking, it is necessary to distinguish between
the optical flow, which is the field of instantaneous 2D velocity vectors of the points in
the image on the image plane, and the displacement field, which is the field of discrete
displacement vectors connecting the location of the same image-point in successive image
frames. However, when the time interval between the frames is small enough, the displace-
ment field is a good approximation to the optical flow. The usual approach to motion
analysis consists of two steps-the computation of optical flow followed by its interpre-
tation to provide the 3D structure and motion of the objects in the scene as well as the
motion of the camera. The computation of optical flow is similar to the correspondence
problem mentioned earlier. In fact, it is common to regard the correspondence problem in
stereopsis as a special case of motion correspondence. However, in stereopsis, the knowl-
edge of the relative locations of the cameras constrains the search for corresponding points
in a manner that is not possible in motion analysis. Finally, we mention one important
limitation of current approaches to motion analysis. Most of the techniques for motion
analysis deal with only two frames. Some initial approaches to multi-frame analysis are
described in the body of ti.is report.

Identifying image "events" that correspond to each other is the primary task of both
motion and stereo analysis. The term "events" is used here in a broad sense, to mean any
identifiabLe structure in the image - e.g., image intensities in a neighborhood, edges, lines,
texture markings, etc.

The techniques that rely on the similarity of the light intensity reflected from a scene
location in the two frames as the basis for determining correspondence are called intensity-
based approaches. Methods that identify stable image structures, and use them as tokens
for finding correspondences are referred to as token-based approaches.

The most popular way of solving the correspondence problem is to divide it into one or
two parts. The first is the local correspondence problem, which provides partial or complete
constraints on the displacement of a point in the image, based on image information in
the immediate neighborhood of that point. Usually the local correspondence is solved
(partially or fully) independently at all points of interest in the image. The second part,
where used, consists in applying a non-local constraint on the flow field. This is usually
an assumption of the spatial smoothness of the flow field, or one that is derived from the
geometry of rigid bodies in motion. This constraint can be either global or semiglobal,
depending on whether or not explicit boundaries are recognized, across which the constraint
is not allowed to propagate.

It is also possible to impose on top of this framework for the computation of displace-
ment fields, a multi-frequency, multi-resolution approach. In this approach the images are
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pre-processed with a set of band-pass filters which are spatially local and which decompose
the spatial frequency-spectrum in the image in a convenient way. The outputs from the
corresponding filters applied to the two images are matched, and the matching results from
the different filters at the same location in the image are combined using a consistency
constraint.

The primary goal of motion analysis is to determine the 3-dimensional structure of
the objects in the environment and the relative movement of the camera and the objects
in the scene. The determination of the 3-dimensional image displacements or velocities
of the image-points is only one (although an important one) of the steps involved. The
interpretation of the displacement (or velocity) fields to determine the 3D structure of the
environment and the relative 3D motion between the objects and the camera is another
important step.

In this report we describe the techniques and algorithms we have developed for using
motion analysis to determine environmental structure and sensor motion. We also describe
how we have used these techniques in concert with other methods developed in our group
to address the problem of intelligently navigating an autonomous mobile robot through a
3D environment.

2 Motion Research

2.1 The Reliable Computation of Optical Flow: A Smoothness
Constraint and a Confidence Measure

Although our hierarchical correlation algorithm [40] for the computation of dense displace-
ment fields proved to be an efficient and reliable technique, there are still a number of
situations where the algorithm makes mistakes. These situations arise in areas of the im-
age without significant intensity variations and at occlusion or motion boundaries. Our
previous work (51 attempted to identify such situations through the use of a confidence
measure which indicated the reliability of a match vector. The recent work of Anandan
uses a relaxation process to improve matches with low confidence based on neighbouring
matches with higher confidences.

In his recently completed doctoral dissertation [81, Anandan provides a unified frame-
work for extracting a dense displacement field from a pair of images, as well as an integrated
system based on a matching approach. This framework appears to be sufficiently general
to encompass both gradient-based and correlation-matching approaches. It consists of
a hierarchical scale-based matching scheme using bandpass filters, orientation-dependent
confidence measures, and a smoothness constraint for propagating reliable displacements.
His integrated system for the extraction of displacement fields uses the minimization of the
sum-of-squared-differenccs (SSD) as the local match-criterion, computes confidence mea-
sures based on thr - ,pe of the SSD surface, and formulates the smoothness assumption
as the minimizaL. an error functional. This overcomes many of the difficult problems
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that exist with other techniques.
The SSD measure which is to be minimized is expressed as

SSD(mo,yo; , ,,b = W(i,j)(I(xo + i,yo + j) - J(xo + 6,,,yo + 5)).
i,? -n

Here I and J are the intensity functions describing the first and second images, respectively,
W is a weighting function, n is the radius of the match window, and b. and b y are the x-
and y-components, respectively, of the displacement of the pixel located at (X0, yo) in the
first image. In practice, W is taken to be a Gaussian, and n is chosen to be 2.

The error functional consists of two terms: one, called the approximation error, mea-
sures how well a given displacement field approximates the local match estimates; the
other, called the smoothness error, measures the global spatial variation of a given dis-
placement field. The finite-element method is used to solve the minimization problem. The
approach also gives information for extracting occlusion boundaries in some situations.

The confidence measure that was described in (51 was a scalar value between 0 and 1
that indicated the reliability of the displacement vector at a pixel in the image. One such
value was provided for each pixel. This measure was derived by studying the properties
of the error-surface obtained during the process of computing the displacement at a pixel.
However, the image displacement vector is a 2-D quantity. Hence, it is appropriate to
have a 2-D confidence measure associated with the displacement vector.

In his previous work (5], Anandan observed that the error-surface allowed us to dis-
tinguish between situations in which completely reliable information regarding the dis-
placement vector (i.e., at high curvature points along image contours) is available, those in
which we have only partial information (i.e., at edge locations where only the displacement
perpendicular to the edge can be reliably measured), and situations where there is no reli-
able information (i.e., at homogeneous intensity areas of the image). The new confidence
measure is a vector quantity which uses these distinctions.

The work of Anandan consists of two steps. The first is the computation of these
vector-valued confidence measures and the second is the smoothing process which corrects
unreliable displacement vectors based on their reliable neighbours.

e The new confidence measure is best described as a two-dimensional vector. It is
convenient to describe the vector in terms of the local orthogonal basis vectors img
and mim, which are the principal directions for the SSD surface. The displacement
vector D can be decomposed in terms of its components along these basis vectors,
and confidence measures c,,,.- and c.,,,, given by the principal curvatures of the SSD
surface, are associated with these components. The details of their computation are
given in (6]. It is worthwhile to note that these are no longer bound to be between 0
and 1. The formulation of the smoothness constraint described below requires that
these values be allowed to vary between 0 and oo.

* The process of improving an unreliable match estimate based on its neighbours is
formulated as a smoothness constraint on the displacement vector field. The smooth-
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ness constraint consists of two errors, E,,,th and Eo,,.o., whose sum is rinimized.
E,,,th measures the spatial variation of the displacement field, i.e., the smoother
the variation, the smaller the error. It is taken to be:

E.th({})= ff (u +u ±V. ±V) da dy,

where {U} is the set of displacement vectors U(, y) = (u(X, y), v(X,y)) T , derivatives
are represented by u, = eOu/O, etc., and the integration is over the whole image.
E.,,.o_ measures the deviation of the smooth displacement field from the initial field
provided by the matching process:

Eapp.o, ({U }) = [c,, (U .,,, - D , , ,,)2 + c,i, (U - 6,i, - D . mi,)2]
2,1Y

The definition of this error makes it clear that the low confidence estimates are al-
lowed to vary more than the high confidence estimates. Hence, the smoothing process
modifies the initial displacement values at locations of low confidence measures more
than those at the locations of high confidence measures.

The smoothness constraint translates into a minimization problem which is solved using
the finite-element method, since this permits the inclusion of known discontinuities in the
displacement field. The application of this method leads to a local relaxation algorithm,
which iteratively updates the displacement vector field [8].

Anandan has also shown that the functional minimization problem formulated in his
matching technique converges to the minimization problem used in gradient-based tech-
niques (e.g., Glazer's technique discussed in the next section). In particular, by relating an
approximation error functional used in his matching approach to the intensity constraints
used in the gradient-based approaches, he explicitly identifies confidence measures which
have thus far been implicitly used in the gradient-based approach. Finally, he suggests the
ways that algorithms operating on a pair of frames can be developed into multiple-frame
algorithms, and discusses their relationship to spatio-temporal energy models. Anandan's
algorithm has been applied to many image sequences. In Figure 1, we show a pair of
images, in which both the camera and the dinosaur have moved independently from one
image to the next.

In Figure 2, we show the corresponding optical flow determined by Anandan's algo-
rithm.

2.2 Glazer's Hierarchical Algorithms

Glazer's recently completed thesis [411 presents an approach to motion detection using
multi-resolution methods in a hierarchical processing architecture. Two motion detection
algorithms are developed and analyzed. The hierarchical correlation algorithm utilizes

7



Figure 1: The Dinosaur-Image Experiment.
The input images (128 x 128), with Frame 1 at top, Frame 2 at bottom. The camera
motion is a translation to the right, along with a rotation about the vertical axis. The
independent moticn of the dinosaur is primarily rotational about the vertical axis.
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Figure 2: Displacment Field Using Anandan's Algorithm.

The smoothed displacement vector field computed using Anandan's algorithm for the

dinosaur-image, superimposed on Frame 1. In order to enhance visibility, only a 32 x 32

sample of the displacement is shown.
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a coarse-to-fine control strategy across the resolution levels and overcomes two disad-
vantages of single-level correlation: large search areas requiring expensive searches, and
repetitive image structures which cause incorrect matches. The hierarchical gradient-
based algorithm [421, generated over low-pass image pyramids, extends single-level gra-
dient algorithms to the computation of large displacements. Within each level, the next
refinement of the displacement field is obtained by combining a local intensity constraint
and a global smoothness constraint. The mathematical formulation involves the minimiza-
tion of an error functional consisting of two terms, corresponding to the intensity and the
smoothness constraints mentioned above. The minimization problem is solved using the
finite-difference approach which leads to a multi-resolution relaxation algorithm. A formal
analysis of the hierarchical gradient algorithm is presented, including the basic equations
for computing a refined disparity vector, the discrete representations and computations
for solving these equations, and a geometric interpretation of the resulting relaxation algo-
rithm. The experimental results show that the two algorithms have comparable accuracy
and a cost analysis shows that the hierarchical gradient algorithm is less costly.

2.3 The Computation of General Motion for Independently Mov-
ing Objects from Optical Flow

The segmentation of an image into independent objects is one of the most difficult problems
in computer vision. Adiv [1,2] has developed an algorithm which performs this segmen-
tation when the objects are independently moving. His algorithm has two main stages.
In the first stage, the optical flow field (obtained, e.g., via Anandan's algorithm) is par-
titioned into connected segments of flow vectors, where each segment is consistent with
a rigid motion of a roughly planar surface. Such a segment is assumed to correspond to
part of only one rigid object. This initial organization of the data is utilized in the second
stage without the assumption that the surfaces are planar. Segments are then grouped
under the hypothesis that they are induced by a single rigidly moving object and/or by
the sensor motion. This is done by computing the optimal motion parameters and related
error measure for each segment by employing a least-squares approach that minimizes the
deviation between the measured flow fields and that predicted from the estimated motion
and structure. Based on the fundamental equations for optical flow:

Tx - ZTz y + fi(1 + X) _ QXXy
u -- Z

=Tr -yTzTv = Z + fnzX - fDx(1 + y') + f~rzy,

the error function to be minimized is:
n T X - X2

W, [ Tx + Qzyi - fly(1 + ) + 1XXiYi) +

Zi
+ (Pi - T i ni1 z + SIX(1 + Y4) - 1ii)J
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where the translation vector is (Tx,Ty,Tz), the rotation vector is (1x, fly, S/z), and for
each i between 1 and n (ai,fli) is the optical flow vector computed at pixel (xi,yi), with
Wi its weight. Zi is the spatial depth of the corresponding environmental point. The
task is to find the translation, rotation, and spatial depth which minimize this function.
This step essentially involves grouping segments of the flow field which are consistent with
the same motion parameters. Therefore the output of Adiv's algorithm is a set of object
masks, as well as the motion parameters of each of these independent objects. Numerous
experiments with real data show this algorithm to have quite good performance. In Figure
3, we show the results of Adiv's algorithm when applied to the image pair of Figure 1. We
recall that there is general, independent motion of the objects which are imaged. In this
example, we see good qualitative agreement between the segmentation of the image using
Adiv's algorithm, and the actual objects in the scene.

2.4 Inherent Ambiguity in the Motion Analysis of Noisy Flow
Fields

Owing to the presence of noise and other image imperfections, the optical flow in an image
sequence will not be exact. The work of Adiv [3,4 mathematically examines the robustness
of algorithms which compute general motion from optical flow. The analysis focuses on
ambiguities that are inherent in the sense that they are true of all algorithms, and can
only be resolved if constraining assumptions or other sources of visual information are
employed.

Two sources of ambiguity which arise from noisy flow fields are examined. The first
ambiguity is in recovering the motion parameters from a noisy flow field generated by a
rigid motion. Motion parameters of the sensor or a rigidly moving object may be extremely
difficult to estimate because there may exist a large set of significantly incorrect solutions
which induce flow fields similar to the correct one. Adiv shows that if the field of view
corresponding to the region containing the interpreted flow field is small, and the depth
variation and translation magnitude are small relative to the distance of the object from the
sensor, then the determination of the 3-D motion and structure can be expected to be very
sensitive to noise and, in the presence of a realistic level of noise, practically impossible.
He also experimentally found that there was a relationship between the location of the
focus of expansion (FOE), the point where the sensor velocity vector intersects the image
plane, and the degree of ambiguity.

The second ambiguity is in the decomposition of the flow field into sets of vectors
corresponding to independently moving objects. Two independently moving objects may
induce optical flows which are compatible (modulo the noise) with the same motion pa-
rameters; hence, there is no way to refute the hypothesis that these flows are generated by
one rigid object. Adiv shows that the standard rigidity assumption [611 is not appropriate
for noisy flow fields. He proposes that a weaker assumption is more effective, namely that a
connected set of flow vectors, consistent with a rigid motion of a planar surface, is induced
by a rigid motion.

11



/r - - - - -/ - .- - - - -- a* -0 -0 -6

Cr~ NN --a -a -

a- 4- 4 W o 4- 4-4 C-. 4a-4U-r nNN

o 0' 0'0'0'' ~ aO -0 - ~ -- . ~

a a0 000 0 0 a

Figure 3: Adiv's Algorithm.
The grouping of the flow vectors into segments is shown by using various shapes of the
vector tails. Vecotrs without a tail are ungrouped. In addition, the "correct" boundaries
are shown.
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In related work, Snyder (55,56,581 has considered the general effect of uncertainty in
the position of image points on algorithms which attempt to compute environmental struc-
ture from motion. He analyzes the case of uniform translational sensor motion in a rigid
environment. He finds analytical expressions for the uncertainty in depth which follows
from uncertain image point positions, and for the search region for these points in sub-
sequent frames of a multiple image sequence. The former result can be used to associate
a confidence measure with the depth of each environmental point, and the latter can be
used to constrain the search region for a point of interest in subsequent frames.

2.5 Recovery of Depth from Approximate Translational Motion

In this section, we describe our early attempts at recovering environmental depth from
approximate translational motion. As we will note, although the first few algorithms we
developed appeared at first sight to give good results, extensive experimentation on real
motion sequences convinced us that the conditions necessary for these algorithms to give
accurate depth values are only rarely satisfied in realistic motion scenarios, so the utility
of these earlier algorithms seems to be very restricted. In Section 2.5.3, we analyze the
reasons for the failure of these algorithms and present an algorithm which does not suffer
from the same inadequacies. It appears very promising for the accurate determination of
both environmental depth and sensor motion.

One of our earliest attempts to recover the FOE in the case of approximate translational
motion was the algorithm of Pavlin [51]. In this algorithm, the global search for the FOE
requires the computation of the sum of errors (e.g., via correlation) associated with the
displacement of a set of feature points in two or more frames. A sparse sampling of the
possible location of the FOE provides a global error function whose minimum localizes
the direction of motion. The accuracy and robustness of this algorithm was found to be
a function of the number of points that are tracked and contribute to the error function,
which of course must be traded off against the amount of computation that can be tolerated
for real-time motion analysis.

As we will note later in Section 2.5.3, the basic assumption of this algorithm, namely
that the sensor motion was purely translational, is rarely satisfied in practical situations,
so that this algorithm is of limited utility.

2.5.1 Refinement and Prediction of Image Dynamics and Environmental Depth
Maps over Multiple Frames

The algorithm developed by Bharwani, et al. [28,29] was an attempt to iteratively refine
the depth map of the environment over multiple frames so as to obtain increasingly more
precise depth estimates. The algorithm assumes uniform translational sensor motion be-
tween adjacent frames of the multiple image sequence. Although our preliminary results
on synthetic image sequences appeared promising, extensive experimentation with this
algorithm on real image sequences showed that the assumption of uniform translational
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motion central to this algorithm is rarely valid. As a result, the practical utility of the
Bharwani algorithm appears to be restricted to highly controlled environments where the
motion of the sensor can be very precisely constrained.

2.5.2 Registration

As we have noted in the previous two sections, the assumption of uniform translational
motion is typically violated to such an extent that the algorithms we developed were of
little use in practical motion situations. Since the violation of the assumption of uniform
translational motion implies the existence of rotational components in the sensor motion,
our next attempt to find robust, accurate algorithms focused on finding and removing
these rotational components, a process called Registration. We developed an algorithm
which attempted to do this, but exhaustive experimentation showed that the removal of
the rotational sensor motion components was a fragile and numerically unstable process.
Indeed, we found that even very small rotational components to the motion (on the order
of a few tenths of a degree) could not be effectively removed. Hence, this approach to the
determination of sensor motion parameters and environmental depth was seriously flawed.

All the problems we found with these algorithms led us to develop an algorithm which
could effectively deal with the existence of rotational as well as translational components
to the sensor motion. That is, we sought to develop an algorithm which could deal with
general sensor motion. This is described in the next section.

2.5.3 Processing Approximate Translational Motion for a Robotic Vehicle

As we have noted earlier, our previous research in motion analysis led us to attempt to
deal with a real application subsystem for the Carnegie-Mellon University robotic vehicle
[60]. The goal was to detect obstacles in the path of the vehicle at distances beyond the
limits of the ERIM laser range sensor (i.e. at distances beyond 40 feet). Initial results
from Bharwani's algorithm implied the possibility of extracting usable depth of obstacles
at distances between 40 and 80 feet. By applying an FOE extraction algorithm prior to
the depth extraction algorithm, there was an expectation that an effective subsystem could
be developed. To accomplish this in actual imaging situations on a moving vehicle turned
out to be far more difficult than anticipated.

In dynamic imaging situations where the sensor is undergoing primarily translational
motion with a relatively small rotational component, it might seem likely that "approx-
imate" translational motion algorithms can be effective in determining depth. Although
translational motion was the dominant form of motion and was approximately constant
over a long sequence of frames, there usually were local variations due to irregularities
in the road surface (bumps, holes, and undulations), as well as minor rotation of the ve-
hicle as it translates. This was often manifested in changes in the location of the FOE
(i.e. effectively it produces a different translational motion), and in rotational motions
that had to be removed if correct values of depth were to be extracted from the feature
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displacements. An attempt to correct for these effects via a relatively simple preprocess-
ing algorithm (registration of the image sequence), without utilizing full analysis of the
general motion problem, also led to difficulties. The issues and our experimental efforts to
deal with what we initially considered to be the relatively simple problem of approximate
translational motion are discussed in [34J. In this paper, we show quantitatively that even
small rotations can significantly affect the computation of the FOE. This is shown both
theoretically for the case of an environment which can be approximated as a frontal plane
and experimentally for a real image sequence.

These problems led us to compare the efficacy of a general motion algorithm obtained by
combining the previously described Anandan and Adiv algorithms with a new translational
motion algorithm obtained by using a weighted Hough transform technique. The latter
algorithm finds all the possible intersections of the displacement vectors, and corresponding
to each intersection votes in a Hough array. The number of votes corresponding to each
intersection is an increasing function of the length and confidences of the displacement
vectors which intersect. This ensures that longer displacement vectors and more reliable
displacement vectors are weighted more heavily. The smallest region in the Hough array
with at least p (taken to be 0.1 in the experiments) fraction of the votes is then chosen as
the region for the location of the FOE. The depth of points is then calculated using the
time-adjacency relationship:

Z D
_EZ :2AD'

where Z is the depth of the 3-D point P, D is the distance from the FOE of the corre-
sponding image point p, AD is the distance p moves between the initial and final frames,
and AZ is the inter-frame sensor displacement.

We found [341 that the depths of points in a real image sequence were obtained with
an error of about 9% for the general motion algorithm and of about 20% for the weighted
Hough transform algorithm. In Figure 4, we show six frames from a motion sequence taken
with the Carnegie-Mellon (CMU) robotic vehicle. In Table 1, we show the ground truth
and experimental depth values for a number of objects in this image sequence. In Table
2, we show the results for the motion parameters obtained from the same algorithm. In
Table 3, we show the average error in depth for points on the obstacles (traffic cones) in
this image sequence. We conclude that while the FOE might be approximately extracted,
most real situations require general motion analysis to reliably determine the depth of
points, even when sensor motion is primarily translational with only small amounts of
rotation. One obvious hardware solution (at significantly increased cost) is the use of a
gyro-stabilized platform so that sensor motion typically will be much closer to the case of
pure translational motion.

We have also developed algorithms which represent alternatives to this approach. These
are described in the next sections.

15



-tic

Frame 1 with displacement vectors for 1-3 Frame 3 with displacement vectors for 3-5

Frame 5 with displacement vectors for 5-7 Frame 7 with displacement vectors for 7-9

A

Frame 9 with displacement vectors for 9-11 Frame 11

Figure 4: The Sequence of Image Frames Taken With the CMU
Robotic Vehicle.
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I I I -3 3-5 3-11571 5-7 7-9 1J- 91 9-11
Object Its. EptI True U J Exfpt1 I True Exptl Ij7 p True

conel 1 65.7 76 58.3 72 61.7 68 50.3 64 61.2 60
2 66.9 76 67.7 72 60.5 68 63.6 64 59.6 60

cone2 3 61.4 76 67.2 72 65.1 68 63.0 64 63.9 6n
4 60.8 76 82.3 72 56.2 68 61.7 64 61.7 60

cone3 5 50.2 56 59.2 52 46.3 48 40.8 44 38.4 40
6 51.1 56 49.6 52 46.1 48 41.0 44 38.5 40

cone4 7 59.3 56 53.8 52 44.4 48 35.9 44 37.9 40
8 46.3 56 53.3 52 47.6 48 41.8 44 39.8 40

can 9 44.1 46 44.4 42 47.6 38 41.8 34 39.8 30
10 * 46 * 42 * 38 * 34 * 30
1 * 46 * 4 ' 38 * 34 * 30

coneS 12 31.0 36 32.2 32 26.0 28 22.0 24 20.0 20
13 31.1 36 31.1 32 26.3 28 22.5 24 20.8 20
14 31.9 36 30.9 32 28.5 28 21.9 24 20.5 20

cone6 15 18.1 21 * 17 *8 ** ** ** *
16 18.4 21 * 17 ** ** ** ** **
17 18.9 21 -29 17 * * 8* 8* ** *

18 18.6 21 -42 17 ** 8* *8 8* 8* **

n l 1 3 1 3 lU 3-5 [ 3-5 [ 5-7 [ 5-7 T -9 -9 9- 11 9-11

Object I pt-l ExptlI True Exptli True Exptl j True Exptl True Exptl j True
can 9 38.1 46 43.3 42 36.5 38 32.2 34 29.6 30

10 40.4 46 0 42 0 38 30.3 34 3. 30
1 1I 4 4 .2 4 6 4 2 5 4 2 0} 3 8 1 0 3 2 .7 3 4 0 4 3 0

Table 1: Depth Values of Some Points Over a Sequence of Frames
Using the General Motion Algorithm.

The two tables used 100 and 200 points respectively. Depths are in feet. * and 0 indicate
respectively that the point was not among the top 100 or 200 Moravec points. ** indicates
that the point is absent in thje image-pair.
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I 1oopts 11-3 1. 3-5 1 5-7 7-9 1 9-11 I
U -009 -0.09 -0.09 1 -0.09 -0.09
V -0.25 -0.25 -0.25 -0.25 -0.25
W -0.96 -0.96 -0.96 -0.96 -0.96
A -0.19 0.17 -0.10 -0.04 -0.03
B 0.39 0.56 0.53 0.49 0.43
C -0.301 0.01 0 0.07 0.06 0.28

I200pts 1-3 3-5[15-7 17-9 _711

1U 10.09 -0.16 1-0.09 1-0.09 -0.09 1
V -0.25 -0.21 -0.25 -0.25 -0.2
W -0.96 -0.96 -0.96 -0.96 -0.96

A .19 0.11 -0.10 -0.03 0.03
C -0.22 -0.52 0.10 0.07 0.31

Table 2: Motion Parameters Obtained Using the General Motion Algorithm.

The frame pairs are at 4 ft. intervals. The results have been tabulated for 100 and for

200 Moravec points. (U,V,W) is the unit translation vector, and (A,B,C) is the rotational

vector in degrees.
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Frame-Pair Average Error
1-3 12.4%

3-5 6._9 _ _Yo

5-7 8.2 %
7-9 9.2 %

9-11 5.4%

Total Average Error = 8.9 %.

Table 3: Average Errors in Depth For Points on the Obstacles.
The obstacles are the traffic cones in Figure 4. The results are for the general motion
algorithm of Adiv.
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2.6 Stereoscopic Motion Analysis and the Detection of Discon-
tinuities

By carrying out motion analysis with imagery from a pair of sensors-stereoscopic motion-
the additional constraints can significantly reduce the complexity of the analysis on a
theoretical level. Balasubramanyan and Snyder [23,24,251 have developed an algorithm to
extract the parameters of motion in depth: the single component Tz of translation in depth
(i.e. parallel to the line of sight) and the two components fix and fly of rotation in depth
(i.e. rotations that are not around the line of sight). This is achieved by building upon
the work of Adiv for segmenting the flow field into rigid independently moving objects [1],
and the formulation of Waxman and Duncan [62]. The latter authors show that the ratio
of the relative optical flow between a stereo pair of images to the disparity between them
is a linear function of the image coordinates:

Aa _TzT = fi - IIYYJ -

6

where Aa and A/# are the components of the relative optical flow between the two images,
6 is the disparity between the two images, (xe, ye) is the coordinate of a point p in the left
frame, Ox, fly, and TZ are the three motion-in-depth parameters, and Z is the spatial
depth of the corresponding environmental point P.

The algorithm proceeds in four steps:

1. Extract the relative optical flow field between the left and right images using the
difference between the two optical flow fields, along with the disparity field.

2. Use Adiv's algorithm to segment the monocular optic flow corresponding to the left
sensor. This segmentation is therefore performed using only motion information in
the 2-D image plane in order to obtain a grouping of the flow vectors, where each
segment corresponds to the motion of a roughly planar surface.

3. Merge the segments on the 2-D image plane (obtained from the segmentation step)
based on a least-square minimization to compute the motion-in-depth parameters
for each of the merged regions. The output at this stage is a grouping of the image
into regions that correspond to the same set (within some normalized value of the
deviation) of motion-in-depth parameters.

4. Minimize the following error functional over each set of relative flow vectors corre-
sponding to a single segment or possibly a merged set of them:

E(lx,fly,Tz) >j W , -7 +

=1
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where (zi,yi) denotes an image point in the set in question, and n is the number of
elements in the set.

The algorithm was run on synthetic data with general motion of both the sensor and
independently moving objects. It shows good performance with ideal images (i.e., no
noise), but shows some degradation of performance with increasing noise. A representative
example of the results obtained are given in Figure 5 and Table 4. Work is currently
underway to test the effectiveness of this algorithm on real scenes.

One of the most important problems in stereo and motion processing is the recovery of
depth and motion boundaries. A number of algorithms for computing optic flow make a
global smoothness assumption that tends to unnaturally smooth across depth and motion
discontinuities. This makes later detection of these boundaries very difficult. On the
other hand, knowledge of these discontinuities is very important for the flow and disparity
computations to be correct, especially at occlusion boundaries.

One approach to this problem is to integrate motion and stereo data. Balasubramanyam
and Weiss [26] use information in both the stereo and motion sequences at two time in-
stances to define a confidence measure in the presence of motion and depth discontinuities.
This measure can be applied early, prior to the full computation of flow and disparity fields.
The general idea is to use coarse disparity and flow estimates from hierarchical correlation
processes [10 to locate and label depth and motion discontinuities; smoothing is then in-
hibited across these boundaries. Discontinuities that are continuous (i.e. unbroken) in the
other dimension are favored. The results of running this algorithm on both synthetic and
real stereo-motion imagery are presented in [26]. We give an example in Figure 6.

2.7 Smoothness Constraints for Optical Flow and Surface Re-
construction

The computation of optical flow normally requires a constraint on the variation of the
flow fields from constancy. Snyder [57] has given an axiomatic derivation of the possible
smoothness constraints under a small number of physically reasonable assumptions. He
shows that there are only four possible smoothness constraints which are quadratic in first
derivatives of the optical flow, and either first or second derivatives of the image intensity
function that satisfy these assumptions. He also gives a novel geometric interpretation of
these smoothness constraints, and shows that only two of the four are physically sensible.

2.8 Analysis of Constant General Motion

Another way to introduce additional constraints to the problem of general motion analysis
in an effort to achieve practical, robust algorithms is via Shariat's formulation: constant but
arbitrary general motion of a rigid object [54]. This leads to a set of difference equations
across a sequence of images, relating the positions of a feature in the image plane to
the motion parameters of the projected point. The solution obtained is a set of 5th
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Figure 5aSimulated ideal, dense opti....... .............. ". .. Figureb Simulated idea, dense optic

flow field for the left camera... . . . . . . . .... . --. . . . . .fo fel frth ri tca r.

. . . . . . . ............ . . . .

.......................

- - - - - - .........
...................

Figre~ Siulte Simulate dense depetiedc

of disparity vectors.

Baseline is 0.5 focal units.

Figure 5d Result of segmentation Figure 5e Result of merger in the optimization step
of the algorithm. Note that the independently moving sphere is

performed using Adiv's algorithm Il. picked out.

Figure 5: Stereoscopic Motion.
The algorithm of Balasubramanyam and Snyder applied to a noisy optical flow field. The
camera motion is completely general; the sphere is moving independently with no motion-
in-depth components, while the ellipsoid is stationary.
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size position Object Translation Oect Rotation

(ocal units) radias)
Input Computed Input Computed

sphere 2,2,2 9,9,30 Tx = 0.50 x_77-0.0 = 0.0
TV = -0.5 Or 0.00 fi"-r = 0.02

,9,0 Tz = 0.00 T "" = 0.11 flg =-O.lO
size position Object Translation Object Rotation

(focal units) (radians)
ellipsoid 2,5,2 -3,-1,20 stationary

plane Z = X + 0.5Y + 50 stationary

Camera Translation Camera Rotation
(focal units) (radians)

Input Computed Input Computed
camera Tx = 0.50 fx = 0.02 nl "" -0.03

Ty = 0.05 fly = -0.02 fMOM  
= -0.01

TZ = 1.0 T7'0
MP 

= 1.2 fZ =0.04

Table 4: General Camera Motion with Independent Object Motion.
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Sequence '!Stereo-Motwon ;% % .qI. ' Ii

The Flow Disparity
Error Estimate is
shown alongside

Figure 6: The Balasubramanyam and Weiss Algorithm.
The four video images at the top of the page are the stereo motion sequence. The images
from the left (right) camera are on the left (right). The earlier stereo pair is at the bottom,
while the later stereo pair is at the top. The binary image at the bottom of the page shows
the flow disparity estimate.
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order non-linear polynomial equations in the unknown motion parameters. The solution
requires a Gauss-Newton non-linear least-squares method with carefully designed initial
guess schemes. Pavlin [52] has derived a closed-form solution for the rigid object trajectory
by integrating the differential equations describing the motion of a point on the tracked
object. The integrated equations are non-linear only in angular velocity, and are linear in
all other motion parameters. These equations allow the use of a simple least-square error
minimization criterion in an iterative search for the motion parameters.

2.9 Token-Based Approaches to Motion and Perceptual Organi-
zation

The problems cited previously with respect to the extraction of motion and depth in-
formation using traditional optical flow techniques have led us toward the exploration of
methods for combining the local flow/displacement fields with larger token-like structures.
It is our position that the inherently local measurement of visual motion provided by
optical flow is insufficient to meet the varied requirements of dynamic image understand-
ing. The approach we developed involves computing the correspondence between tokens
of arbitrary spatial scale produced by perceptual organization processes. Such tokens of-
ten map directly to environmental structure, and descriptions of their movement often
correlate more closely with the motion of physical objects than does the local motion in-
formation contained in the displacement field. A token match represents more than just
a spatial displacement; also explicit in this representation are the time-varying values of
those parameters which define the token, or which can be extracted from the structure of
the token.

The work of Williams and Hanson [65,66] describes work in progress toward this goal.
The premise of this work is that the structure obtained from perceptual organization
processes can be combined with the local motion information contained in the flow field
to provide a more robust estimate of motion and depth parameters. The approach can be
viewed as augmenting the rather limited use of spatial structure in traditional approaches
with the richer descriptive vocabulary of spatial structure provided by the perceptual
organizational processes over both space and time. In this sense, the spatially organized
structures (such as lines, regions, curves, vertices, intersections, rectangular groups, etc.),
which are actively constructed from the image can be considered to be interest operators
of large spatial extent.

In their first paper [65], a method for computing the temporal correspondence between
straight line segments is presented. We consider the two frame case here, but the method is
extensible, and has been extended, to multiple frames. A straight line perceptual organiza-
tion process developed by Boldt and Weiss [27,641 is applied to both frames independently
to provide straight lines in each frame. A displacement field is also computed from the two
frames using the algorithm developed by Anandan [9,10]. After filtering the straight lines
on length and constrast to reduce the line set in both images, the displacement field is used
to construct a search area in Frame 2 for each line in Frame 1. Since a one-to-one corre-
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spondence between lines is unlikely, a minimal mapping approach [61] is used to compute
the correspondence between the Frame 1 and Frame 2 line sets; such a mapping is called
a minimal bipartite cover. The similarity measure used to compute the cover involves
the similarity and spatial separation of the candidate token matches. By computing the
connected components of the bipartite graph, the global matching problem is conveniently
divided into smaller, individually tractable pieces which reflect the scope of potential in-
teractions. A simple blind search of the subgraphs is used to extract the bipartite cover
minimizing the positional and similarity discrepancy metric.

The matching results obtained are quite good. The system has been run repeatedly
on successive frames of several multi-frame sequences. In the multi-frame case, a directed
acyclic graph is constructed which represents the splitting and merging patterns of line
segments over time. Work is in progress to analyze the trajectories of the tokens over time.
In Figure 7, we show the first frame of an image sequence of a soccer ball, the computed
displacement field, the line tokens, and the output of the matching process for selected
lines.

In their second paper [66], a method for computing depth from the line correspondences
is described using the temporal change in the length of virtual lines constructed from the
intersections of the Boldt lines [27]. They use virtual lines because the length of the original
lines is not reliable, although their orientation and lateral displacement are quite precise.
This "looming" method is also generalized to areas. The method is generally applicable to
any structure whose total extent in depth is small compared to the depth of its centroid
(that is, for those cases in which perspective projection can be approximated by scaled
orthographic projection [59]) and which does not exhibit any independent motion. The
technique does not depend on the complete determination of the egomotion parameters of
the sensor, but it does require the computation of the component of the sensor's translation
in the direction of motion. An analysis of the sensitivity of the algorithm to errors in the
measured variables is planned for the near future; experimental results on real image
sequences suggest that the algorithm may be quite robust. In Figure 8, we show the
first frame of an indoor motion sequence taken by our mobile robot. In Figure 9, we
show the line segments used to define virtual lines and virtual regions. In Tables 5 and
6, we show the experimental results for depth using the virtual lines and virtual regions,
respectively. The error in depth seems to be around 5%; this is a promising result, but
further experimentation is necessary.

2.10 3-D Interpretation of Rotational Motion from Image Tra-
jectories

The research of Sawhney and Oliensis [53] addresses the problem of finding the motion
parameters of independently moving objects in their natural coordinate system. They
analyze an extended time sequence of images of an object rotating uniformly around an axis
of arbitrary location and orientation, and demonstrate how the abstraction of continuous
descriptions of multi-frame data can lead to the recovery of scene motion and structure.
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Figure 7: Application of the Algorithm of Williams and Hanson.
7a. The first frame of a motion sequence containing multiple independently moving objects.
7b. The Line Tokens Computed For the First Frame. Line tokens which will. be used to
illustrate the output of the matching process are displayed thick. 7c. The displacment
field co mputed for the first and second frame of the sequence, Not~e the rotation of the
box and the soccer ball. 7d. The otitptt of the patching process for selected lines.
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Figure 8: Mobile Robot Image Sequence.
The first frame of a motion sequence taken by a mobile robot moving down the hallway.
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Figure 9: Line Segments Found by the Williams and Hanson Algorithm.
9a. The line segments used to define virtual lines. 9b. The line segments used to define
virtual regions.
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Virtual Line Depth (ft.) Ground Truth (ft.) % Error t
Cone 1 19.1 20.0 -4.5 ±
Cone 2 23.6 25.0 ' 5.6 3
Cone 3 28.3 35.0 19.1 1
Cone 4 42.1 40.0 5.3 7
Can 1 29.0 30.0 3.3 7
Wall 1 27.7 27.1 2.2 2
Wal 2 48.8 48.7 0.2 7

Doorway 88.8 87.1 2.0" 7

Table 5: Comparison of the Computed and the Ground Truth
Depth for the Virtual Lines.
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Virtual Region Depth (ft.) Ground Truth (fL) % Error t
Cone 1 20.1 20.0 -0.5 1
Cone 2 25.8 25.0 3.2 3
Cone 3 35.5 35.0 1.4 1
Cone 4 40.0 - 40.0 0.0 7

Table 6: Comparison of the Computed and the Ground Truth
Depth for the Virtual Regions.
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Image traces of 3-D feature points are generated from image point correspondences over a
sequence of frames. These traces are described by continuous curves that are obtained by
fitting conic arcs to the set of points. The goal is motion-based grouping of image traces
to provide constraints (unavailable in only a few frames) sufficient to extract the motion
parameters of independently moving objects in their natural coordinate system.

2.11 A Motion Data Set from the Autonomous Land Vehicle
(ALV)

A major difficulty with the analysis of motion algorithms has been the lack of motion data
with ground truth of known precision. In particular, these data have not been collected
for robot vehicles operating under realistic conditions in outdoor environments. Thus, the
proper scientific evaluation of motion algorithms intended for practical application has
been impossible.

In response to this general problem, our group decided to collect a reasonably large data
set from the ALV [35,361. Motion sequences of about 30 frames each were collected at five
different outdoor sites with different road surfaces, including on-road, dirt-road, and off-
road scenarios. Data from the video camera, laser range finder, and land navigation system
(LNS) were recorded simultaneously under stop-and-shoot and move-and-shoot scenarios.
Ground truth data for the 3-D environment were obtained using traditional surveying
methods, while the LNS provided ground truth data for the motion parameters. This
motion data set is available to the general community and can be obtained by contacting
Ms. Valerie Cohen at the University of Massachusetts (UMass) at Amherst (E-mail address
is VCohen@CS.UMass.EDU).
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3 Mobile Robot Navigation

Vision-based mobile robot navigation is a relatively recent addition to the VISIONS re-
search group at UMass. We have acquired a mobile robot (called HARV) that will enable
us to develop a testbed for many of the vision algorithms that we have developed and
continue to develop. The robot is to be operated both indoors and out, providing a wide
variety of scenes for analysis. The integration of robot planning, perception, and motor
control systems for effective navigation is the focus of continuing work, beginning with the
work of Arkin [13] and continuing with the more recent work of Fennema (37,38,39].

3.1 AuRA-the Autonomous Robot Architecture

Arkin developed an integrated system, the UMass Autonomous Robot Architecture (AuRA)
[11,12,13,14,15,16,17,18,19,20,21,22], to support this research effort. It incorporated both
global and reflexive schema-based path planning strategies and utilized a priori knowl-
edge stored in long-term memory, when available, to assist the vehicle's attainment of its
navigational goals.

AuRA has five major components: the planning, cartographic, perception, motor, and
homeostatic subsystems. A block diagram of AuRA is presented in Figure 10.

The purpose of the hierarchical planning subsystem is to handle the task of path plan-
ning in both indoor and outdoor environments. The cartographic s,'bsystem maintains
the information in long- and short-term memory (which store a priori and acquired world
knowledge, respectively), and supplies it on demand to the planning and perception mod-
ules. The perception subsystem processes all the sensory information from the environ-
ment, interprets it, and delivers it to the cartographic subsystem. The motor subsystem
controls the motion of the vehicle. Finally, the homeostatic subsystem is concerned with

maintaining a safe internal environment for the robot.
The chief navigational issues addressed in the work of Arkin, and also that of Fennema,

include path following, landmark recognition for vehicle localization, and obstacle avoid-
ance. A new fast line finding algorithm [46] was used for hall and sidewalk navigation
and for localization purposes. Our depth-from-motion algorithms are used for obstacle
avoidance, and can also provide information for landmark identification when coupled with
top-down knowledge of expected landmark locations. A new fast region segmentation algo-
rithm [32] has found potential application in both path following and vehicle localization.
A description of all these algorithms and their use within AuRA can be found in [13].

Arkin is now at the Georgia Institute of Technology, continuing the development of
AuRA. Fennema has built on our experience with Arkin's systems to develop new systems
for model-directed navigation, described in the next section.
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3.2 Planning and Control via Milestones for Model-Directed
Navigation

Our mobile robot, HARV, begins with an accurate, but incomplete, model of the world
implemented in GeoMeter (Section 3.3). Each task given to HARV is translated by a
command interpreter and problem solver which ultimately produces a set of navigational
goals. The execution of these goals is accomplished by a tight interweaving of planning, per-
ception, and action, orchestrated by a dynamic planning and execution scheme [37,38,39].
This subsystem works with plans, each represented as a sequence (MO Al M1 ... An Mn)
of milestones Mk and proposed actions Ak. Milestones are constructed from perceivable
events, and are used to verify the successful completion of a particular phase of the plan.
As used here, milestones are composed of 3-D landmarks (perceivable physical events)
and their expected location with respect to the robot at the completion of the appropri-
ate phase of the plan. They allow the progress of the plan to be monitored and to trigger
replanning before the next action is taken when perception and the milestone do not agree.

Planning, perception, and execution are directed by the plan-and-monitor executive
in such a way as to dynamically modify and refine the plan to fit the actual results of each
action and the details of the perceived environment. The principal activities involved in
this process are planning, milestone recognition, determination of location, and execution
of primitive actions. Interweaving perception, planning, and action in this way makes
specific what task is expected of perception, and provides a way of focusing the available
knowledge to that end. The result is a distribution of perception and perceptual reasoning
into all aspects of navigation.

The actual motion in response to the plan is produced by the plan-and-execute mod-
ule. This motion is controlled using perceptual servoing. Perceptual servoing determines
the robot's motion by enforcing control at several levels: action-level servoing ensures
accurate execution of each primitive action; plan-level servoing uses vision to ensure that
the accumulation of primitive actions conforms to a plan; and goal-level servoing ensures
that overall action is directed to the goal. Each level uses model-directed vision and com-
pares what is sensed to what is expected, and issues corrective actions to minimize any
difference. The detailed explanation of each of these can be found in the work of Fennema,
et al. [37,38,39].

3.3 GeoMeter

Models of the vehicle's environment are built using GeoMeter, a three-dimensional solid
modelling package developed jointly by UMass and the General Electric Research and
Development Center [33]. GeoMeter is implemented in CommonLisp and is oriented to-
wards image understanding research (although it has many other potential applications).
It currently runs on several types of workstations, including Symbolics LISP machines, TI
Explorers, VAX workstations, and SUN workstations. Work is under way to allow it to
run on the Sequent Balance 2000.
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GeoMeter adopts the language of simplicial complexes in algebraic topology for de-
scribing surfaces. It provides generality and an explicit representation of edges, vertices,
and faces. Each of these serve as a type of geometric primitive, and can be parametrized
as a smooth function from a point, unit interval, and triangle to R 3 , respectively. Surfaces
are constructed as the union of these primitives, and are denoted by a sum of simplices.
This representation produces a triangulation of the surface, where the triangles are not
necessarily planar.

GeoMeter has two basic parts: a geometric section, and an analytic section. The three
basic entities which the geometric section uses to represent sets of points are the vertez,
the edge, and the face. These are then composed to represent solid objects. Topological
structures are then used to define the connectivity between the sets of the model, and solid
objects are built hierarchically starting with vertices, then edges, then faces.

The analytic section of GeoMeter is devoted to the manipulation of polynomials and
transcendental functions. This is of interest because these functions permit the exact
description of curved surfaces, and also because such manipulations provide a mechanism
for performing algebraic deduction, which is useful in reasoning about geometric relations.

We have surveyed a portion of the UMass campus and have used GeoMeter to construct
a 3-D model, including buildings, sidewalks, lampposts, telephone poles, etc. This model
has been annotated with properties of objects and surfaces which are useful to the planning
and vision routines used by our mobile robot HARV. Although this cannot include every
visible entity (e.g., dirt patches within grassy areas), most of the significant stationary ob-
jects in the environment have been represented in the model. Finally, the entire model has
been placed in a space-organizing data structure, which divides 3-D space into "locales,"
or space packets, that are used for planning and for locating the robot. In Figure 11, we
show how GeoMeter models the area around our building.

3.4 2-D Model Matching

An important problem in model-driven 3-D interpretation is how to use approximate
knowledge of the location and orientation of the sensor, models of objects in the environ-
ment, and the results of low-level vision to determine the image-to-model correspondence.
The approach we have taken is to separate 2-D model-to-image matching from the deter-
mination of the 3-D pose parameters (see section 3.5). We believe this approach will be
more robust.

Beveridge, et al. [30,311 assume that a 2-D model has been supplied with rough
constraints on its image position (e.g., via an approximate 3-D location in a modelled
environment). This substantially reduces the search space of possible model-image line
correspondences. The goal here is to determine correspondences between model and data
lines such that an optimized spatial fit will produce the lowest match error. The search
must be carried out across the space of possible line correspondences. This involves dealing
with the complexities of grouping fragmented data and missing or erroneous lines. The
rotation and translation of the model that minimizes the error in spatial fit for a given set
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Figure 11: The GeoMeter Model of the Area Around the Graduate
Research Center at UMass.

Ila. Geometer model of the area around the Graduate Research Center. 11b. A more
detailed Geometer model (with hidden lines removed) of the same area shown in Ila. Note
that additional landmarks, such as telephone poles, have been added.
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of line correspondences is computed via a closed-form solution.
In more detail, the basic steps of the model-matching algorithm are:

1. Determine the search space of correspondences. Lacking constraints on model po-
sition, all data line segments possibly correspond to every model line segment. If
constraints are available, only associations of model and data lines satisfying these
constraints need be considered.

2. Determine promising model positions if the search space is large. Use these posi-
tions to determine constrained search subspaces made up only of correspondences
consistent with the estimated position. A promising model position may be found
either through a generalized Hough transform or by identifying prominent features.
The generalized Hough technique involves an analysis of the space of possible two-
dimensional spatial transforms necessary to bring the model and the data into align-
ment. The identification of a prominent feature may involve finding a distinctive
part of a model such as a corner, then using that to position the model as a whole.

3. For each of the constrained search spaces (sets of possible model-data correspon-
dences) obtained above, use iterative refinement to determine a best match. After
each iteration, perturb the correspondence, adding or deleting one or several data
lines, and then determine the new best-fit model position and related match error. If
the match error is thereby reduced, adopt the improved match; stop when the match
can no longer be improved. The best of the resulting matches is taken as the final
match.

This algorithm has achieved interesting results when used on images from our mobile
robot domain. In Figure 12, we show a 512 x 512 image of the area around our building,
taken from the mobile robot HARV. In Figure 13a, we show six navigational landmarks
obtained using GeoMeter. In Figure 13b, we show the result of applying the 2-D model
matcher to the image. We see that the matcher has correctly found the data segments
which match the landmark lines.

3.5 3-D Pose Refinement

Kumar (47] has developed an optimization technique for finding the 3-D sensor pose given a
set of correspondences between 3-D model lines and 2-D image lines. The 3-D pose is given
by the rotation and translation matrices which map the world coordinate system to the
sensor coordinate system. Using the output of the system described in the previous section,
these algorithms allow updating of the mobile robot position via landmark recognition.

Previous researchers, e.g., Liu, et al. (50], have decomposed this problem into two
stages: first solve for the rotation, and then solve for the translation. The problem with
this approach is that the rotation and translation constraints, when used separately, are
very weak constraints, such that even small errors in the rotation stage can be amplified
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Figure 12: A 512 x 512 Image Taken With Our Mobile Robot HARV.
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Figure 13: The 2-D Model Matcher.
13a. The six navigational landmarks projected onto the image plane. 13b. The data line
segments matching the landmark lines.
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into large errors in the rotation stage. In Kumar's work, rotation and translation are solved
for simultaneously using an algorithm called "R-and-T." The regnant constraints for this
approach are much tighter, and hence are much more immune to noise than previous
approaches.

The technique used to solve for the optimal rotation and translation is adapted from
the work of Horn [451 on the problem of relative orientation. Kumar minimizes the ob-
jective function, which measures the error between the data and a presumed rotation and
translation, by first estimating the rotation and translation. He then linearizes the error
term about this estimate and makes iterative adjustments to the rotation and translation
that reduce this error. The iterations are continued until the algorithm converges to a min-
imum. This nonlinear least-squares optimization technique has much better convergence
properties than does Liu, et al.'s solution method based on Euler angles. The algorithm
has been tested on both synthetic and real images, with good results (see Table 7).

For practical applications, the issue of computational speed is critical. The acquisition
of parallel hardware, a Sequent multiprocessor, will decrease the processing time required
for both vision and motor tasks and is expected to enhance the real-time capabilities of the
mobile robot project. We are in the process of porting our algorithms for robot navigation
onto the Sequent, and will be doing timing experiments. An additional piece of hardware
is the UMass Image Understanding Architecture (IUA) currently being developed under
another DARPA-sponsored contract [63J. The IUA is a three level board (64 x 64) which
has been designed to deal with with the different levels of computation that one typically
finds in vision tasks, and should be able to operate at speeds that allow real-time vehicle
control. When it is complete, we believe that real-time processing for most of the vision
and robotics navigation algorithms will be feasible.
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NOISE ROTATION ERROR .TRANSLATION ERROR
No.' 9' p , 6 i i,. .AT, A AT

Lindesc d piils deg. deg. deg. feet feet feet

Correct 0.00 0.00 0.00 0.00 0.00 0.00

51 1.0 1.0 0.24 0.15 0.04 0.21 2.03 1.16

5 5.0 5.0 1.20 0.79 t 0.19 1.08 10.14 6.20

'5 5.0 1.0 2.19 0.78 0.19 1.08 10.14 6.2001.05.0. 016 .0 02 .0 1.18

10[ 1.0 1.0 0.21 10.08 0.05 0.02 1.73 0.08

10 5.0 0.72 0.27 01 0.18 6.33 0.48

14 1.0 1.0 0.07 0.0 0.08 0.031 0.77 0.02

14 5.0 .0 03 J" 0 0.17 I 3.80 0.12
30 1.0 1.0 0.03 0.05 1 0.06 10.06 0.48 0.06

30 5.0 5 0.6 031 [0.2 .3 9 0.32]

Table 7: Average Absolute Error of Translation and Rotation for

the R-and-T Algorithm.

The average for each experiment is taken over 100 samples of uniform noise.
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4 Conclusions

This section presents the conclusions drawn from the research performed under this con-
tract.

" Most motion is not translational. There is no such thing as uniform trans-
lational motion, except in very strictly controlled situations. In the absence of a
gyro-stabilized sensor, there are usually rotational motion components in excess of
10 for real image sequences. Algorithms which assume uniform translational motion
in order to calculate quantitative information can be expected to performly poorly
in such realistic situations. They will therefore be of little use for tasks which re-
quire accurate quantitative information, such as computing structure from motion,
unless the objects are quite close to the sensor. They may be of some use for more
qualitative tasks such as avoidance of distant objects, or for navigation.

" General Motion is Necessary. In practical situations, general motion algorithms
will be necessary for any quantitative task. Our combination of the Anandan and
Adiv algorithms to obtain a general motion algorithm shows promise and seems to
be able to find environmental depth with an error of less than about 10%.

* Stereoscopic Motion May Be Useful. This is an alternative to the general mo-
tion algorithms. Although we do not yet have much experimental data on algorithms
which combine stereo and motion, we think the initial results are promising.

* Longer Image Sequences Should Improve Robustness. One way of achieving
good performance for monocular image sequences is to use longer image sequences.
The additional information and constraints provided by such sequences should lead
to more robust results.

* Algorithms Must Be Evaluated Scientifically. Accurate ground truth is needed
to have a quantitative metric for the evaluation of an algorithm's performance. The
scientific evaluation of such an algorithm cannot be performed if you don't know
what you were supposed to get.

" Landmarks are Useful. The use of landmarks in model-based vision appears to
be feasible. This means that models of the environment are needed. The acquisition
of such models is a non-trivial problem in itself.

" The Decomposition of 2-D and 3-D Processing is Useful for Navigation.
The process of correspondence between image data and model data is complicated
by sensory data that are noisy (e.g., skewed and translated lines), fragmented, and
missing elements. The recovery of 3-D pose can be simplified if the problem is
decomposed into 2-D optimization of line correspondences during model-matching,
followed by 3-D optimization of the robot's position and orientation.
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5 Recommendations

In this section, we detail our recommendations for the direction in which motion research
supported by the present contract should head. First we outline the directions for motion
research, and then we present recommendations for future research in mobile robotics.

5.1 Directions for Motion Research

Motion algorithms must be precise. Motion algorithms that derive depth from
an analysis of sensor motion must be capable of recovering the parameters of general
motion with rotational accuracies of much less than one degree. If the algorithm
cannot perform to this level, it will be difficult to recover the environmental depth of
surfaces that are at medium distances from the sensor (for example, 40 feet or more
from the sensor, when the sensor moves 2 feet between frames). The general motion
algorithm of Adiv has shown significant promise in recovering the depths of outdoor
objects with less than 10% error. The robustness of such general motion algorithms
must be carefully evaluated on many sequences of controlled image data.

* Motion algorithms must be compared with ground truth. The motion data
set obtained by us at Martin Marietta has known ground truth for both environmen-
tal depth and sensor motion parameters. It can therefore serve as the touchstone for
the scientific evaluation of the accuracy of motion algorithms. This data set is being
made widely available; we intend to utilize it extensively.

" Motion and stereo should be used together. Efforts to combine motion and
stereo should be extended from the analysis of synthetic laboratory data and applied
to real scenes. Such algorithms also promise the possibility of dealing with general
motion. The goal here should be an algorithm that initially recovers a coarse ap-
proximation to surfaces over the first few frames of the image sequence, and then
continuously refines the surface to form a better approximation. The detection of
occlusion boundaries and depth discontinuities will be critical to the success of this
effort. The performance of such algorithms should be compared with the perfor-
mance of general motion algorithms (such as that of Adiv) for the recovery of sensor
motion and environmental depth.

* Trajectories should be used. Long temporal sequences should be useful for any
motion motion algorithm. The development of token-based tracking algorithms (such
as the line-tracking algorithm of Williams and Hanson) is needed to extract the
trajectories of tokens across sequences. As two tokens of the same type cross each
other, as frequently occurs, the match becomes ambiguous and the tracking sequence
is disrupted. If the image trajectories were fit via smooth curves, they could be
unambiguously matched, and in fact their crossing and occlusion could be predicted.
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Obtaining the trajectories of tokens can also provide critical information for the
organization of moving objects and the recovery of their natural coordinate systems.

Approaches to top-down surface extraction for both static and moving
objects should be investigated. The goal here would be to make use of a static
3-D representation of the environment, and the approximate location of the vehicle,
which is often available. In addition, the system could be provided with a model of
objects that are capable of locomotion, such as people, cars, or bicycles. Thus, direct
extraction of the motion parameters of a surface may be possible by using specific
or general surface models. Furthermore, the extraction and refinement of the depth
of the surfaces would be enhanced by jointly processing the image motions of a set
of points, or an area, with the knowledge of the possible or probable surface models
that can explain the image data.

5.2 Directions for Mobile Robot Research

* Evaluate the efficacy of using accurate 3-D knowledge of the environment.
The 3-D representations and knowledge base must serve as a map for path planning
and navigation, as well as for maintaining descriptions of objects for goal and land-
mark recognition. We intend to use this representation (using GeoMeter) to capture
two local environments, the interior hallways of our building, and the outside of our
building, for experiments in vehicle navigation and to test a variety of navigation
tasks.

* Use a wider range of knowledge about the environment, e.g., color and
texture. The model of the environment can be enriched with information that rep-
resents more qualitative spatial constraints than those obtained using a 3-D modeller
(such as GeoMeter). This information can be captured in a manner similar to the
road scene models in the current knowledge base of the VISIONS system. By using
this methodology, the areas of the image which cannot be conveniently represented
as wire-frame models, such as vegetation or distant mountains, can all be added to
the tight geometric models to provide additional knowledge for object recognition
and navigation.

" Further develop landmark-based navigation strategies. The ability to relate
image events to stored models of objects and landmarks will be crucial to utilizing
the knowledge of the environment that is stored in a map. If specific landmarks can

be recognized, then their location on a map can be used to determine the location of
the vehicle in the environment, or at least to reduce the uncertainty in the vehicle's
position and orientation. In addition, this will be necessary to achieve goals, since
the specification of goals will often involve relationships to objects. The accuracy of
these landmark-recognition algorithms across a variety of landmark/object models
and at a range of distances from the sensor should be evaluated. We expect to
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demonstrate that a 3-D model and model-based vision algorithms can be used to
effectively navigate from an approximately known starting location to another desired
location.

* Supplement model-based algorithms with stereo and motion algorithms.
Model-based algorithms will not work well if an unmodelled object is encountered by
the robot. Motion and stereo algorithms should therefore be used to supplement the
static recognition of landmarks by providing the depth of points, lines, and surfaces
as a function of bottom-up processing of an image sequence. This information would
then be useful for such tasks as obstacle avoidance and the automatic acquisition of
3-D models.

* Use learning to automatically acquire object and scene models. The in-
formation required for object recognition strategies can be time-consuming if con-
structed entirely by hand. It is possible that a training set of interpreted scenes can
be used to automatically acquire object schema knowledge. Some of the attributes of
object classes such as color, texture, size, shape, or location relative to other objects
may be automatically extracted via the use of multiple examples of instances in a
training set. Geometric knowledge can also be acquired during exploration of an
environment via motion and stereo processing. Thus object and scene mouels can
be continuously acquired and refined during or after each navigational experience.
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